Datos personales

Mi foto
Grupo 106A Promedio 9.6 Aciertos 86

jueves, 17 de noviembre de 2011

acidos y bases

http://www.youtube.com/watch?v=mseVO6ml1XU&feature=related

Acido

Considerado tradicionalmente como cualquier compuesto químico que, cuando se disuelve en agua, produce una solución con una actividad de catión hidronio mayor que el agua pura, esto es, un pH menor que 7. Esto se aproxima a la definición moderna de Johannes Nicolaus Brønsted y Martin Lowry, quienes definieron independientemente un ácido como un compuesto que dona un catión hidrógeno (H+) a otro compuesto (denominado base). Algunos ejemplos comunes incluyen al ácido acético (en el vinagre), y al ácido sulfúrico (usado en baterías de automóvil). Los sistemas ácido/base se diferencian de las reacciones redox en las cuales no hay un cambio en el estado de oxidación. Los ácidos pueden existir en forma de sólidos, líquidos o gases, dependiendo de la temperatura. También pueden existir como sustancias puras o en solución.
 Propiedades de los ácidos
1. Tienen sabor ácido como en el caso del ácido cítrico en la naranja y el limón.
2. Cambian el color del papel tornasol azul a rosa, el anaranjado de metilo de anaranjado a rojo y deja incolora a la fenolftaleína.
3. Son corrosivos.
4. Producen quemaduras de la piel.
5. Son buenos conductores de electricidad en disoluciones acuosas.
6. Reaccionan con metales activos formando una sal e hidrógeno.
7. Reaccionan con bases para formar una sal mas agua.
8. Reaccionan con óxidos metálicos para formar una sal mas agua.

Base~

Una base es, en primera aproximación (según Arrhenius), cualquier sustancia que en disolución acuosa aporta iones OH− al medio. Un ejemplo claro es el hidróxido potásico, de fórmula KOH:
KOH → OH− + K+ (en disolución acuosa)
 Propiedades de las bases
Finalmente, según Boyle, bases son aquellas sustancias que presentan las siguientes propiedades:
• Poseen un sabor amargo característico.
• Sus disoluciones conducen la corriente eléctrica.
• Azulean el papel de tornasol.
• Reaccionan con los ácidos (neutralizándolos).
• La mayoría son irritantes para la piel.
• Tienen un tacto jabonoso.
• Se pueden disolver.
• Sus átomos se rompen con facilidad.
• Son inflamables.

Oxidos~

Un óxido es un compuesto binario que contiene uno o varios átomos de oxígeno (presentando el oxígeno un estado de oxidación -2) y otros elementos. Existe una gran variedad de óxidos, algunos de los cuales pueden encontrarse en estado gaseoso, otros en estado líquido y otros en estado sólido a temperatura ambiente. Casi todos los elementos forman combinaciones estables con oxígeno y muchos en varios estados de oxidación. Debido a esta gran variedad las propiedades son muy diversas y las características del enlace varían desde el típico sólido iónico hasta los enlaces covalentes. Por ejemplo, son óxidos el óxido nítrico (NO) o el dióxido de nitrógeno (NO2). Los óxidos son muy comunes y variados en la corteza terrestre. Los óxidos no metálicos también son llamados anhídridos porque son compuestos que han perdido una molécula de agua dentro de sus moléculas.
Tipos de oxidos~
• Óxidos binarios, formados por oxígeno y otro elemento.
• Óxidos mixtos, formados por dos elementos distintos y oxígeno como son las espinelas.
Atendiendo al comportamiento químico hay tres tipos de óxidos: óxidos básicos, ácidos y óxidos anfóteros, aunque no muy comunes en la naturaleza.
• Los óxidos básicos se forman con un metal mas oxígeno, los óxidos de elementos menos electronegativos tienden a ser básicos. Se les llaman también anhídridos básicos; ya que al agregar agua, pueden formar hidróxidos básicos. Por ejemplo:

Na2O+H2O→2Na(OH)

• Los óxidos ácidos son los formados con un no metal + oxígeno, los óxidos de elementos más electronegativos tienden a ser ácidos. Se les llaman también anhídridos ácidos(nomenclatura en desuso); ya que al agregar agua, forman oxácidos. Por ejemplo:

CO2+H2O→H2CO3

• Los óxidos anfotéricos se forman cuando participa en el compuesto un elemento anfótero. Los anfóteros son óxidos que pueden actuar como ácido o base según con lo que se les haga reaccionar. Su electronegatividad tiende a ser neutra y estable, tiene punto de fusión bajo y tienen diversos usos. Un ejemplo es óxido de aluminio.

PH~

El pH (potencial de hidrógeno) es una medida de la acidez o alcalinidad de una disolución. El pH indica la concentración de iones hidronio [H3O+] presentes en determinadas sustancias. La sigla significa "potencial de hidrógeno" (pondus Hydrogenii o potentia Hydrogenii; del latín pondus, n. = peso; potentia, f. = potencia; hydrogenium, n. = hidrógeno). Este término fue acuñado por el químico danés Sørensen, quien lo definió como el logaritmo negativo en base 10 de la actividad de los iones hidrógeno. Esto es:

Desde entonces, el término "pH" se ha utilizado universalmente por lo práctico que resulta para evitar el manejo de cifras largas y complejas. En disoluciones diluidas, en lugar de utilizar la actividad del ion hidrógeno, se le puede aproximar empleando la concentración molar del ion hidrógeno.
 Medida del pH
Dependiendo del pH del suelo, la hortensia (Hydrangea) puede poseer flores rosas o azules. En suelos ácidos (pH < 7) las flores son azules, mientras que en suelos básicos (pH > 7) son rosas.1
El valor del pH se puede medir de forma precisa mediante un potenciómetro, también conocido como pH-metro, un instrumento que mide la diferencia de potencial entre dos electrodos: un electrodo de referencia (generalmente de plata/cloruro de plata) y un electrodo de vidrio que es sensible al ion de hidrógeno.
También se puede medir de forma aproximada el pH de una disolución empleando indicadores, ácidos o bases débiles que presentan diferente color según el pH. Generalmente se emplea papel indicador, que se trata de papel impregnado de una mezcla de indicadores cualitativos para la determinación del pH. El papel de litmus o papel tornasol es el indicador mejor conocido. Otros indicadores usuales son la fenolftaleína y el naranja de metilo.
La determinación del pH es uno de los procedimientos analíticos más importantes y más usados en ciencias tales como química, bioquímica y la química de suelos. El pH determina muchas características notables de la estructura y actividad de las biomacromoléculas y, por tanto, del comportamiento de células y organismos.

enlaces

viideo de enlaces
shttp://www.youtube.com/watch?v=yFDBxwyIh8A

Enlaces quimicos

Un enlace químico es el proceso físico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la electrodinámica cuántica.
 Enlace covalente
Se produce por el compartimiento de electrones entre dos o más átomos. La diferencia de electronegatividades entre los átomos no es suficientemente grande como para que se efectúe una transferencia de electrones. De esta forma, los dos átomos comparten uno o más pares electrónicos en un nuevo tipo de orbital, denominado orbital molecular. Los enlaces covalentes se suelen producir entre elementos gaseosos o no metales.
 Enlace covalente polar
En la mayoría de los enlaces covalentes, los átomos tienen diferentes electronegatividades, y como resultado, un átomo tiene mayor fuerza de atracción por el par de electrones compartido que el otro átomo. En general, cuando se unen dos átomos no metálicos diferentes, los electrones se comparten en forma desigual. Un enlace covalente en el que los electrones se comparten desigualmente se denomina enlace covalente polar .
El término polar significa que hay separación de cargas. Un lado del enlace covalente es más negativo que el otro. Para ilustrar una molécula que tiene un enlace covalente polar, consideremos la molécula de ácido clorhídrico.
 Enlace covalente no polar
Cuando el enlace lo forman dos átomos del mismo elemento, la diferencia de electronegatividad es cero, entonces se forma un enlace covalente no polar. El enlace covalente no polar se presenta entre átomos del mismo elemento o entre átomos con muy poca diferencia de electronegatividad.
 Enlace iónico
Es la una unión de átomos que resulta de la presencia de atracción electrostática entre los iones de distinto signo, es decir, uno fuertemente electropositivo (baja energía de ionización) y otro fuertemente electronegativo (alta afinidad electrónica). Eso se da cuando en el enlace, uno de los átomos capta electrones del otro.

Reacciones de ionizacion

Proceso químico o físico mediante el cual se producen iones, estos son átomos o moléculas cargadas eléctricamente debido al exceso o falta de electrones respecto a un átomo o molécula neutro. A la especie química con más electrones que el átomo o molécula neutros se le llama anión, y posee una carga neta negativa, y a la que tiene menos electrones catión, teniendo una carga neta positiva. Hay varias maneras por las que se pueden formar iones de átomos o moléculas
En ciertas reacciones químicas la ionización ocurre por transferencia de electrones; por ejemplo, el cloro reacciona con el sodio para formar cloruro de sodio, que consiste en iones de sodio (Na+) e iones de cloruro (Cl-). La condición para que se formen iones en reacciones químicas suele ser una fuerte diferencia de electronegatividad entre los elementos que reaccionan o por efectos de resonancia que estabilizan la carga. Además la ionización es favorecida por medios polares que consiguen estabilizar los iones. Así el pentacloruro de fósforo (PCl5) tiene forma molecular no iónica en medios poco polares como el tolueno y disocia en iones en disolventes polares como el nitrobenceno (O2NC6H5).
La presencia de ácidos de Lewis como en los haluros de aluminio o el trifluoruro de boro (BF3) también puede favorecer la ionización debido a la formación de complejos estables como el [AlCl4-]. Así la adición de tricloruro de aluminio a una disolución del cloruro de tritl (Cl-CPh3), un compuesto orgánico, resulta en la formación del tetracloroaluminato de tritilio ([AlCl4]-[CPh3]+, una sustancia iónica y la adición de cloruro de alumino a tetraclorociclopropeno (C3Cl4, un líquido orgánico volátil) proporciona el tetracloroaluminato de triclorociclopropenilio ([AlCl4]-[C3Cl3]+ como sólido incoloro. A este proceso se le suman las umas de los electrones compuestos por menos cargas negativas al núcleo de el primer átomo consecutivo

Solvatacion~

Proceso de asociación de moléculas de un disolvente con moléculas o iones de un soluto. Al disolverse los iones en un solvente, se dispersan y son rodeados por moléculas de solvente. A mayor tamaño del ion, más moléculas de solvente son capaces de rodearlo, y más solvatado se encuentra el ion.
Los solventes polares son aquellos con una estructura molecular que contiene dipolos. Tales compuestos suelen tener una alta constante dieléctrica. Las moléculas polares de estos solventes pueden solvatar iones porque pueden orientar la porción parcialmente cargada de la molécula hacia el ion en respuesta a la atracción electrostática. Esto estabiliza el sistema. El agua es el solvente polar más común y mejor estudiado, pero existen otros, como el acetonitrilo, dimetil sulfóxido, metanol, carbonato de propileno, amoníaco, etanol y acetona. Estos solventes pueden ser usados para disolver compuestos inorgánicos como las sales.
La solvatación involucra a diferentes tipos de interacciones moleculares: puente de hidrógeno, ion-dipolo, atracción dipolo-dipolo o fuerzas de London. Los tres primeros pueden estar presentes sólo en solventes polares. Las interacciones ion-ion sólo pueden suceder en solventes iónicos (por ejemplo, en fase fundida). Los procesos de solvatación sólo estarán termodinámicamente favorecidos si la energía libre de Gibbs de formación de la solución es menor que la suma de la energía libre de Gibbs de formación del solvente y el soluto por separado.
La conductividad de una solución depende de la solvatación de sus iones.

Conductividad~

La capacidad de un cuerpo o medio para conducir la corriente eléctrica, es decir, para permitir el paso a través de él de partículas cargadas, bien sean los electrones, los transportadores de carga en conductores metálicos o semimetálicos, o iones, los que transportan la carga en disoluciones de electrolitros.
 Conductividad en medios líquidos
La conductividad en medios líquidos (Disolución) está relacionada con la presencia de sales en solución, cuya disociación genera iones positivos y negativos capaces de transportar la energía eléctrica si se somete el líquido a un campo eléctrico. Estos conductores iónicos se denominan electrolitos o conductores electrolíticos.
 Conductividad en medios sólidos
Según la teoría de bandas de energía en sólidos cristalinos, son materiales conductores aquellos en los que las bandas de valencia y conducción se superponen, formándose una nube de electrones libres causante de la corriente al someter al material a un campo eléctrico. Estos medios conductores se denominan conductores eléctricos.

Electronegatividad~

La electronegatividad, (abreviación EN, símbolo χ (letra griega chi)) es una propiedad química que mide la capacidad de un átomo (o de manera menos frecuente un grupo funcional) para atraer hacia él los electrones, o densidad electrónica, cuando forma un enlace covalente en una molécula.1 También debemos considerar la distribución de densidad electrónica alrededor de un átomo determinado frente a otros, tanto en una especie molecular como en un compuesto no molecular.
La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes, su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia.2 La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares.
Se han propuesto distintos métodos para su determinación y aunque hay pequeñas diferencias entre los resultados obtenidos todos los métodos muestran la misma tendencia periódica entre los elementos.
El procedimiento de cálculo más común es el inicialmente propuesto por Pauling. El resultado obtenido mediante este procedimiento es un número adimensional que se incluye dentro de la escala de Pauling. Esta escala varía entre 0,7 para el elemento menos electronegativo y 4,0 para el mayor.
Es interesante señalar que la electronegatividad no es estrictamente una propiedad atómica, pues se refiere a un átomo dentro de una molécula3 y, por tanto, puede variar ligeramente cuando varía el "entorno"4 de un mismo átomo en distintos enlaces de distintas moléculas. La propiedad equivalente de la electronegatividad para un átomo aislado sería la afinidad electrónica o electroafinidad.
Dos átomos con electronegatividades muy diferentes forman un enlace iónico. Pares de átomos con diferencias pequeñas de electronegatividad forman enlaces covalentes polares con la carga negativa en el átomo de mayor electronegatividad.

Ley Lewis~

La regla del octeto, enunciada en 1917 por Gilbert Newton Lewis, dice que la tendencia de los átomos de los elementos del sistema periódico es completar sus últimos niveles de energía con una cantidad de 8 electrones de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble,1 los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares.
Existen diferentes tipos de enlace químico, basados todos ellos, como se ha explicado antes en la estabilidad especial de la configuración electrónica de los gases nobles, tendiendo a rodearse de ocho electrónes en su nivel más externo. Este octeto electrónico puede ser adquirido por un átomo de diferentes maneras:
• Enlace iónico.
• Enlace covalente.
• Enlace metálico.
• Enlaces intermoleculares.
Es importante saber, que la regla del octeto es una regla práctica aproximada que presenta numerosas excepciones, pero que sirve para predecir el comportamiento de muchas sustancias.
En la figura se muestran los 4 electrones de valencia del carbono, creando dos enlaces covalentes, con los 6 electrones en el último nivel de energía de cada uno de los oxígenos, cuya valencia es 2. La suma de los electrones de cada uno de los átomos son 8, llegando al octeto. Nótese que existen casos de moléculas con átomos que no cumplen el octeto y son estables igualmente.